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D I S T R I B U T I O N  O F  S T R E S S E S  IN E L A S T I C  

S T R O N G L Y  A N I S O T R O P I C  M A T E R I A L  

Yu. A. Bogan UDC 539.3 

Two well-known problems in elasticity theory are considered in this work (stress distribution within an elliptical region, 

and the contact problem for the half plane) from the point of view of the effect of marked anisotropy. We recall that a material 

is called markedly anisotropic if Young's modulus in a given direction is much greater than in the orthogonal direction. In 

particular, the limiting case is studied when the material at the limit is unstretchable. It is discovered that the calculation 

problem for the constructions mentioned above has a series of specific features. 

1. Stress Distribution in an Elliptical Region. A method is suggested in [i, 2] for calculating orthotropic plates based 

on the fact that for many materials the ratio of complex parameters is small. This method is also based on expanding complex 

potentials @k(k = 1, 2) into a series for non-negative powers of the small parameter. It shown below on the example of an 

explicit solution of the boundary problem for an elliptical region that expansion into a series of one of the complex potentials 

commences with a negative power of the small parameter and also that the solution of the limiting problem has a feature of 

the square root type at points of  tangency for characteristics of the limiting equation boundary. 

We take the generalized Hooke's law for an orthotropic material in the form 

O'1.1 ~ CIIUt.x! -I- C12U2~x2 , 0"22 ~ C12ttl~ 1 -'l- C'22U2.z2 ~ O"12 ~--" (.Yt.~,(Ul,t2 4- U2.xl), 

where u 1, u 2 are displacements; cij are elasticity coefficients. We introduce dimensionless stresses and stiffness assuming that 

(from here on, for dimensionless stresses the previous notation is retained). 
We consider the situation when d22 >> 1. This situation corresponds to a composite material reinforced with a single 

family of very stiff fibers parallel to axis x 2. We assume that d22 = e -2 ,  e << 1. The equation for the function of stresses 

in the absence of volumetric forces has the form 

~w'4  + (I + e2w'4 = 0 

(3'1 = d l l - 1 ,  c = dl2 2 + 2d12). With e = 0 it is converted into an equation 

~ , , o 4  + ",@22 = 0 
�9 , x~  ,.~1.x2 

of the composite type with one double family of characteristics x 1 = const. The change in type of  equation at the limit makes 

it possible to expect that the solution of the limiting problem will have features which are absent in anisotropic elasticity. In 

fact, as was shown previously [3], close to the characteristic part of the boundary occurrence of  a boundary layer is observed 

and the number of boundary conditions at the limit reduced to one. 

Accurate solution of  the elasticity theory problem for a solid ellipse with stress vector prescribed at the boundary is 

given in [4]. Using the notation in [4] we write the boundary conditions: 

2ReItbl(zl) + ~ , (z  2) I I~  = g,(e), 
2Re + I I = e=(o). 

It is assumed that gl, g2 are expanded into a Fourier series: 
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g~(O) = a o + ~ (a~e ~' + ~e-'~), 

~(o) = ~o + ~ ~ e  ~ + ~.e-~). 

The equation for the boundary is taken in parametric form x 1 = acos0, x 2 = bsin0. For plate equilibrium it is necessary to 

fulfill the condition -i(c~ 1 - &l)b -1  = a-l( /81 + /]1). Functions ~1 and ~2 are expanded into a series with respect to Faber 
polynomials: 

"I = Ao + Alzl + f~ AJ, Pu,(zl)' "2 = Bo + B,z2 + f~ BJ, Pz,(z2)" 
1~-2 2--5 

Here 

? ,~ (z )  = ( -  l )  (a  - r e , b ) - '  l(z, + ( z  - a ~ - / ~ , t ~ )  w )  + 

+ ( z  - ( z  - a ~ - / , 2 t ; ) v ' ) *  1, s = l ,  2. 

We assume that/;k = i/k; ll and l 2 are positive roots of the equation 

( d ,  - ,12) (1 - e - 2 2  2) + d , l '  = 0 .  

Constants A k, B k are determined from the set of equations 

A~, + B k + ~ , t ( +  Bkt; = - - a , ,  At/* 1 + B,.u, + A,~, t~  + B,~p2t2 = --fl,~, 

where t k = (a + i#kb) (a - i~kb)-1 (k = 1, 2). In future we assume that equilibrium conditions are fulfilled and that A o, 

B 0 = 0 .  
We consider passage to the limit with t --- 0. Then l I tends towards zero and l 2 tends towards d = ~'dT1. More 

accurately, 

1, = �9 + O(E3) ,  l 2 = d + O ( r 2 ) .  

We assume that 

Then 

61 = /2(I - t~) (1 + t~) - e(l  - t:) (1 + t~), 

,s, = t~(1 - t~)(I + t~') - ,(I + t 0 (l - 0. 

a~, = fi~"[(I + t~)Im~, - I~(I - t~)Reak], 

d~ = 6~'tlr(l -- t~)Rea d - (I + t:)Imakl, 

ffi - ~Zt(l + t~) Ima k + (I - t~) Re/~,l, 

= 6~q[(l - t:) Re/~, + e(l + t:)Im .a,l. 

It is easy to see that ak e, cke , dke have a fine limit with t --, 0. However, bk e is the order O(e-1). We assume that bk e = 

-e-lm e. Then m e converges with e ---, 0 to the value m~ 

m o= 3~t[d(I + t~)Ima, + (I - t~)Refl,], 

,s3"=- 2b,,-'/,a0 + t;) - 20 - t;). 

Consequently, asymptotic expansion ~l(Xl + iex2) commences with the power e - I ;  therefore expansion with respect 

to powers e, suggested in [1], is incorrect. In fact 

~1 = ~_~ (a', + tb'k)[RePt,(zt) + /ImPt,(z 0 1. 
k - 2  

Then 
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I 

Re<~ 1 = 2 ( a ;  Re e~(zl) - b~ Im e~(z,)), 

Im ~ l  = ~ (b~ Re Pta(z0 + a~ Im Ptk(z~)). 
(1.2) 

It follows from (1.2) that Re,I, 1 = O(1), Im&�94 = O ( e - l ) .  We assume that Pik(x) = - 2  cos kt, t = arccos x/a,  then 

P~(z~) = ?~(x)  + teye~(x) + o & ) .  

Here P lk ' (x )  = - 2 k a - 1  sin kt(sin t) - 1 .  

The preceding calculations make it possible to complete a passage to the limit in Eqs. (1.2). If w 0 is the solution of 

the limiting problem,  then 

w O  ~ t �9 ~1 = x2~~ + ~~ + Re ~'~(z~), z~ = xt + ~dx~, 

W 0 _~ ~ ,~ ~o~(x~) 4" Re td~(z~), 
where 

'Pl(Xl ) = 2~ ak cos(k arccos x l / a ) ;  
k ~ 2  

~p2"(Xl) is the first term in Eq. (1.2). It is easy to prove that the boundary conditions for the original problem are fulfilled at 

the limit. We calculate stress cr22 = WX]xl in the limiting problem: 

a,,  = x : " g x  0 + ~,';(x,) + R~"2(z~) .  

~,t(xl) = - ~ a~(k cos kt(sin t) -2 - sin kt cos kt(sin t)-3). 

M 

k - 2  

It is apparent  that the product  x2~ol"(x1) has the feature (x 2 - a2) -1/2 with x = + a ,  x = - a .  It is easy to see that in the 

limiting strain problem e22 = 0 and the material  is unstretchable in the direction of axis x 2. At the limit the rule of state has 

the form 
o" n ffi dnu1.~t, at2 ffi ul.~= + uz, xl, az2 ffi q 4" dtaul.~l, e~  = O. 

Here q(x 1, x 2) is a new unknown function (reaction of  the material  to limited unstretchability). Displacements  u 1, u 2, and 

function q satisfy the set of  equations 

dnul.,,tr I + u1,=z,2 = O, u2.~2 = O, 

q~2 4- U2"xlXl 4" (1 + dtz)ut.~l~2 = O, 

with the general  solution 
u 1 = Re<lt'(x I + ldx2), u, = u2(xl), 

q = -x2u2.~z~. - (1 + dr2 ) u~,~l + to(xl) (1.3) 

and it depends on three unknown functions: ~0, q,, u 2. It is noted that close to the point x 1 = a ,  - a  a so-called "free" boundary 

layer arise and in order  to construct a uniform solution everywhere in a closed region for the original  p rob lem to the limiting 

solution it is necessary to add boundary layer function. 

We give one more  example  demonstrating the incorrectness of  the direct passage to the limit. The potential of  a simple 

layer in a bounded singly-connected region Q with boundaries class C 2 may be described in the form [5] 

ul = ~ - l  I m j ) { [ A l l n o  I + A, lnaz im t + [Bllna t + B21nozlra 2 }ds, 

(1.4) 
u s ffi ~t - t  Im j ) { [ B t l n a  t + Bzlncr21m t + [Cllntr t + C~lna, lm2}ds, 

where m 1, m 2 are unknown densities; a 1 = x I - ~1 + i8(x2 -- ~2); Gr2 = Xl -- ~1 + i/2(X2 -- ~2); (~1, ~2) E aQ; coefficients 

A k, B k, Ck(k = 1, 2) have the following order  with respect to e: 
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a~ = l(1 + d=)aa~'~(e 2 - dn)-~e  ~, A s = t ~ f f  2, 

B 1 = e2(l + d=)(e 2 -  dn) -l, B 2ffi (1 + dL~)d~l'e~, 

CI ffi /~, C~ ffi /(1 + dt~)ad[~t/~(e ~ - dn)-~e ~. 

We recall that the potential of a simple layer resolves the first main problem of elasticity theory (at the boundary the force 

vector is prescribed) and it has a logarithmic growth at infinity. If in (1.4) we pass to the limit with ~ --, 0 we obtain u 2 = 0. 

It is evident that this solution does not correspond to the general solution (1.3). If  the solution obtained above is analyzed for 

a solid ellipse, then it should be assumed that product tm2(s) = g'2(s) has a f'mite limit with e --- 0, and then 

,,~ = (~d)-' f ,,,~(~) In ,~d~, ,,, = ~-' f r In I~, - x , (s ) lds ,  

r~ = ((x~ - x~(s)) ~ + d(x~ - x2(s)y) ~" 

(OQ* is the uncharacteristic part of the boundary). 

2. Rigid Die with an Elastic Orthotropie Half Plane. This problem has been studied effectively and in the future we 

are interested in the main limiting case when the half plane is unstretchable in the direction of axis x 2. In the absence of friction 

the boundary conditions of the problem are written as: 

,,,, = o w~m x,  = - o ,  Ix, I ~, a, ,,~ = I (x , )  with Ix, I ~ a; (2 .1)  

trL~ = 0 with X 2 = - - 0 .  ( 2 .2 )  

The interval ( - a ,  a) is the possible region of contact. In the notation in [4] stresses o'12, o'22, and displacement u 2 are expressed 

in terms of Lekhnitskii complex potential as follows: 

o,,, = 2Rel~l(zx) + %(z2) l, aL~ = -2Relp1Ot(z  x) +/~2r I, 

u s = 2Re[ql~l(z 1) + q2~2(z2) l, qk = ax~k + a~,-u~ l, k -- 1, 2. 

First we provide the solution of the original problem in a form convenient for further analysis. We assume that 

~ l ( Z l )  = (~tt)-Xp2(pX -- p~)-I "f p(X) I n ( x  - zx)dx, 
- a  

~2(z2)  = - ( : t0- ;~x(p I - p2) -t J" p(x)  In (x  - z2)dx. 
- a  

Then boundary condition (2.2) is fulfilled in the same way and in order to determine unknown density p(x) we have an integral 

equation 

m " fp( t )  ln[t - x[d t  = f ( x ) ,  nt = Rel(/~xq 2 -/ztq2) (u t - / t~ ) - t : t  -1 
- - i t  

with the solution 

a 

p(x)  = (=m) ' l ( a~  - x2)-V2l~r-' f / ( t )  (a~ - : ) - v 2 ( t -  x ) - I c l t -  =PI 
- - a  

= ~ x ) m  -~ .  

The preceding equations make it possible to determine entirely the stress-strained state in the lower half plane x 2 _< 0. 

As above, we consider the limiting situation when t --- 0. At the limit we obtain (as previously an upper zero index 

signifies the limit of a value with t --, 0) 
a 

k~(xl) = - f g ( 0 1 n l t  - xaldt, 
- t t  

u~(xl, xa) - -Re(~td) -1 j" g(t)ln(t - z3)dt, z 3 ffi x~ + ldx~, 
- - i t  

479 



o~z2 = x z ~ - '  ~f g(t)  (t  -- x l ) -2d t  - Re(x/d)- '  "f g(t)  (t - z3)- td t ,  
- a  - t i  

a , , ( x ~ , - 0 )  = (~d)-~g(x). 

The first integral in the equation for a22 ~ is hypersingular and it only exists in the sense of a Hadamard finite part. 

It is noted that u2 ~ -= Cl ln lx l l  with large Ixl l ,  ui(x l, x2) = C21nr 2 with large r2; here u2 ~ only depends on x t, and cr220 

increases linearly with respect to x2; nonetheless, pressure beneath the die is finite. 
In order to illustrate the solutions obtained above we consider two particular cases. 

A. A Die with a Flat Base. We assume that f(x 1) = c. Then 

,,~(~,) = ~ with I x ,  I -~ ~, 

o - P [ l n ( x  I + ( ~  - a:) t/2) - lnal  + c with X l > a,  /4 2 

o =  P[in(x t 4, ( ~ -  a:) t / 2 ) -  I n a l +  c with x 1< - a ,  U 2 

a~ = - x2u2,,z,2 - R e e ( t d ( ~  - a~)t/2) - ' .  

If the force pressing against the die is PO, then P0 = PTrd-! and pressure beneath the die p(x l) is given by the classical 

equation 

p ( x , )  = Po~r - ' (a :  - <)-V2. 

It is noted that stress 0220 on the extension of the die has the feature (xt 2 N a2) -3 /2 ,  which is absent in the classical problem. 

The resons for this are explained below. 

B. A Die with a Rounded  Base. We assume that as always f(xl) = x12(2R) - 1, where R is radius of curvature. Then 

-~(x,) = ~,(2R)-' with Ix,  I ~ " ,  

u2(x,) = -Fl i r t (x ,  + ( ~  - a2) v2) - lna I +  ~ ( 2 R ) - '  - x t (2R)- ' (~  - a2) v2 

where x 1 > a, and a similar equation occurs with x 1 < - a ,  

~ . ( x , , - - 0 )  = - d - ' f a  2 - ~ ) - v 2 [ _ p  + R - ' ( ~  - 2-'a2) 1, Ix, I ". 

The solution is physically possible if pressure beneath the die is not negative, i.e., if P _ a2(2R)- 1. If P does not satisfy this 

condition it means that force P is insufficient in order to be in complete contact with an elastic body. As is normal [6, 7], in 

this case in order to determine the contact region it is necessary to use the requirement for reversion to zero of the contact 

pressure at the ends of the contact region. We point out that as in the previous case a220 with t x l > a has the feature (X 2 -- 
a 2) - 3/2. 

Appearance of  this feature for stress a22 ~ is connected with the fact that with ~ << 1 the original problem is singularly 

disturbed and close to point x 1 = + a  a free boundary layer arises. Here only a zero term of the asymptotic is constructed; 

in order to construct a uniform asymptotic it is necessary to add a boundary layer function to this solution. 
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